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In this paper we extend the difference formulation for radiation transport to the

case of a single atomic line. We examine the accuracy, performance and stability

of the difference formulation within the framework of the Symbolic Implicit Monte

Carlo method. The difference formulation, introduced for thermal radiation by some

of the authors, has the unique property that the transport equation is written in terms

that become small for thick systems. We find that the difference formulation has a

significant advantage over the standard formulation for a thick system. The correct

treatment of the line profile, however, requires that the difference formulation in

the core of the line be mixed with the standard formulation in the wings and this

may limit the advantage of the method. We bypass this problem by using the gray

approximation. We develop three Monte Carlo solution methods based on different

degrees of implicitness for the treatment of the source terms, and we find only

conditional stability unless the source terms are treated fully implicitly.

Key Words:difference formulation; implicit Monte Carlo; line transport

1. INTRODUCTION

Time-dependent transport of radiation from resonance lines is an important component
of the physics of stellar atmospheres and of laser-produced plasmas. In optically thick
systems, the radiation transport equation for photons is dominated by many spontaneous
emission and absorption events and is tightly coupled to the level population equation. This
system of equations can be difficult to solve numerically in any discretized scheme in time
and space due to its stiffness and the wide range of opacities inherent in an atomic line
profile.

It has been known for many years that the explicit Monte Carlo solution of the radiation
transport equation, coupled to the material response equation, for a strongly absorbing
and emitting material, is numerically unstable. One reason for this is that in optically
thick regions both the emission and absorption terms are large and thenet emission (or
absorption) of radiation is a small difference of these two quantities. Any small imbalance
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or inconsistency in space and time between absorption and emission terms can lead to
instability. This difficulty requires that the source terms in the transport equation be
implicitly differenced when using Monte Carlo methods for its solution [1].

The first successful – and now widely used – method for addressing this difficulty came
from Fleck and Cummings [2], [3]. Their method, called Implicit Monte Carlo (IMC),
converts part of the absorption-emission cycle into instantaneous effective scattering. The
net effect of IMC is to reduce the strength of the coupling between the photon transport
equation and the material energy equation by peeling off part of the coupling and treating
it as effective scattering. Stability is achieved by weakening the radiation-matter coupling.
This can lead to unphysical results [4] in addition to a significantly increased execution
time to handle the scattered photons.

A second approach to the problem of numerical stability was published in [5] and
[6]. In this scheme Monte Carlo particles are emitted and tracked with weights that remain
unknown to within a multiplicative factor until the end of the integration cycle. This method,
called Symbolic Implicit Monte Carlo (SIMC), removes the costly effective scattering of
IMC and does not artificially weaken the radiation-matter coupling. However, in thick
systems the strong emission and absorption terms lead to increased Monte Carlo noise.

The difference formulation for photon transport [7] directly addresses the stiffness prob-
lem by employing a transformation that replaces the spontaneous emission term with source
terms that are small when the local coupling between spontaneous emission and absorption
is strong. Our goal, in this paper, is to explore whether or not the difference formulation
is cleanly applicable to the case of line transport. We implement and study a numerical
application of the difference formulation for the case of the transport of a single atomic
line, examining the issues of accuracy, stability and efficiency.

In Section2 we introduce the equations for line transport first in the standard formulation,
and then in the difference formulation. There, a difficulty for the wings of the line appears
that would force us to mix the standard formulation with the difference formulation in order
to treat a real line profile. We conduct our numerical investigation with a gray (square) line
shape function in order to sidestep the issue. The section concludes with a discussion of
our treatment of boundary conditions within the new formulation.

Section3 addresses some details of the numerical treatment of the difference formulation,
including the new source terms. The Symbolic Implicit Monte Carlo (SIMC) solution
method [5], applied to the standard formulation, requires the solution of a linear system in
order to update the atomic populations at the end of the integration cycle. The corresponding
population update for the difference formulation is non-linear, requiring a Newton-Raphson
solver. Whether or not implicit treatment of the source terms is required in the difference
formulation is an open question that we investigate. To this end, we develop three treatments
of the source terms, each with differing levels of implicitness. Our explicit treatment is
free of a non-linear matrix solve, but is only conditionally stable. Our fully implicit
treatment requires a non-linear matrix solve, but numerical evidence suggests that it is
unconditionally stable. A semi-implicit method is examined and gives some insight into
the numerical instabilities arising in the explicit treatment of the source terms.

We compare the accuracy, efficiency and numerical stability of the SIMC method in
the standard formulation to our implementations of the difference formulation in Section
4. We demonstrate that the difference formulation delivers a startling decrease in noise,
or an equivalent increase in execution speed for a given noise figure, when compared to
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the Monte Carlo solution of the standard formulation for transport. Finally, we present a
summary of this work in Section5.

2. THE EQUATIONS FOR LINE TRANSPORT

We present the transport equations for photons for a two-level atomic system in slab
geometry, where the photons are emitted and absorbed according to the same line profile,
φ(ν), in the regime of complete redistribution. The transport equation for photons is
coupled to the population equations for the atomic levels. Motion of the medium and
physical scattering of photons are not considered, but we include collisional pumping
between atomic levels.

2.1. The standard formulation
In what we refer to as the "standard formulation," we write the photon transport equation

as

∂f

∂t
+ cµ

∂f

∂x
=

n2

2
A21φ− c (K12n1−K21n2) φf , (1)

wherec is the speed of light,x is the position coordinate perpendicular to the slab,µ is the
direction cosine of the radiation with respect tox axis,f(µ, ν, x, t) is the photon number
density distribution per unit atom density,n2(x, t) is the upper level population fraction,
n1(x, t) is the lower level population fraction,A21 is the spontaneous emission rate,φ(ν)
is the line profile normalized to unit integral [8], andK12 = κN whereκ is the lower state
absorption cross section andN is the atom number density. The coefficientK21 satisfies
the Einstein relation

K21 =
g1

g2
K12 , (2)

whereg1 andg2 are the statistical weights for levels 1 and 2, respectively. For the purposes
of this paper, we consider all material parameters,C12, C21, A21, K21 andK21 to be
independent ofx, constant in time, and assume complete redistribution within the line
shape.

The equations governing the atomic population fractionsn1 andn2 are

∂n2

∂t
= C12n1 − C21n2 −A21n2 + c (K12n1−K21n2)

∫ 1

−1
dµ

∫ ∞

0

dν φ(ν)f(µ, ν) (3)

and

n1 + n2 = 1 , (4)

whereC12 andC21 are rate constants for the collisional transitions1 → 2 and2 → 1,
respectively.

Using Eq. (4), equations (1) and (3) are rewritten as

∂f

∂t
+ cµ

∂f

∂x
=

n

2
A21φ− c [K12 − (K21 + K12)n]φf , (5)

and

∂n

∂t
= C12 − (C12 + C21 + A21) n

+ c [K12 − (K21 + K12) n]
∫ 1

−1

dµ

∫ ∞

0

dν φ(ν)f(µ, ν) , (6)
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respectively, wheren is the upper level population fraction. We refer to these equations as
the standard formulation for line transport in the context of this paper.

2.2. The difference formulation
The difference formulation, introduced in [7], removes the spontaneous emission term

and the trouble it causes for thick systems through a simple transformation of the transport
equation. The transformation produces a transport equation with new source terms that are
small for thick systems, at least in the core of the line, and leads to an efficient numerical
solution in optically thick media.

For the case of line transport, the difference formulation is derived by considering the
radiation field that is in equilibrium with a given upper level atomic population fraction

B(n(x, t)) =
n(x, t)A21

2c[K12 − n(x, t)(K21 + K12)]
. (7)

The equilibrium field,B, defined in Eq. (7) is independent of photon frequency.
We begin the transformation to the difference formulation by rewriting the spontaneous

emission term from Eq. (5), as well as from Eq. (6), using the equilibrium field, Eq. (7).

∂f(x, t; ν, µ)
∂t

+ cµ
∂f(x, t; ν, µ)

∂x
=

− c [K12 − (K21 + K12) n(x, t)]φ(ν) [f (x, t; ν, µ)−B(n(x, t))] , (8)

∂n(x, t)
∂t

= C12 − (C12 + C21) n(x, t) + c [K12−(K21+K12) n(x, t)]

×
∫ 1

−1

dµ

∫ ∞

0

dν φ(ν) [f(x, t; ν, µ)−B(n(x, t))] . (9)

Next, we define the “difference” intensity,

d(x, t; ν, µ) = f(x, t; ν, µ)−B(n(x, t)) . (10)

We note that this is our first sign of trouble for the difference formulation when applied to
the case of line transport. The fact thatB does not depend uponν means that in the wings
of the line wheref is small – even for a system that is thick in the core of the line – the
difference fieldd must be large in order to compensate. The result will be an increase in
noise in the wings of the line. We will return to this issue in what follows.

Substituting Eq. (10) into the transport equation gives

∂f(x, t; ν, µ)
∂t

+ cµ
∂f(x, t; ν, µ)

∂x
=

− c [K12 − (K21 + K12) n(x, t)]φ(ν)d(x, t; ν, µ) . (11)

We now subtract the derivatives ofB from both sides, giving

∂d(x, t; ν, µ)
∂t

+ cµ
∂d(x, t; ν, µ)

∂x
= − c [K12−(K21+K12)n(x, t)]φ(ν)d(x, t; ν, µ)

− ∂B(n(x, t))
∂t

− cµ
∂B(n(x, t))

∂x
. (12)
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The population equation becomes

∂n(x, t)
∂t

= C12 − (C12 + C21) n(x, t)

+ c [K12 − (K21 + K12) n(x, t)]
∫ 1

−1

dµ

∫ ∞

0

dν φ(ν)d(x, t; ν, µ) . (13)

We refer to these equations as the difference formulation of line transport.
Our formal manipulations give us two equivalent forms for the transport and atomic

population equations: Eqs. (5), (6) and Eqs. (12), (13). The two sets of equations satisfy
equivalent boundary and initial conditions and were obtained without approximation.

2.3. Boundary conditions for the difference formulation
In order to relate the boundary conditions for the standard formulation to those for the

difference formulation, we use the fact that the upper level atomic population fractionn

is the same for both and use the relationd = f − B(n) to construct thed field from
f . The strict non-negativity off translates into a lower bound for the difference field,
d ≥ −B. When an initial condition is specified forf , the corresponding condition ford
can be obtained by the above relation.

In this work the physical medium has finite extent with vacuum boundary conditions.
We specify thatn be zero in the vacuum and thusd = f there, accordingly. The emission
from the surface into the vacuum is given by the−cµ ∂B/∂x term at the boundaries, in
addition to the particles that escape from within. It consists of emission of positived = f

particles into the vacuum, and negatived particles into the material, cooling it, and gives a
natural prescription for treating boundary conditions in the difference formulation.

2.4. The gray approximation
The line emission profileφ(ν) occurs in both the spontaneous emission and the absorption

terms for line transport. This leads to the frequency independence of the equilibrium field,
B(n(x, t)), and the result that the difference field does not become small in the wings
of the line as the optical thickness of the problem is increased. In practical terms, this
means that even the simplest line transport problem must employ a mixing of the difference
formulation in the core of the line with the standard formulation in the wings.

Wanting to evaluate the effectiveness of the difference formulation in the core of the line,
we apply the gray approximation to Eqs. (5) and (6) giving

∂f

∂t
+ cµ

∂f

∂x
=

n

2
A21 − c [K12 − (K21 + K12)n] f , (14)

and

∂n

∂t
= C12 − (C12 + C21 + A21) n + c [K12 − (K21 + K12)n]

∫ 1

−1

dµ f(µ) , (15)

respectively. The gray approximation isφ(ν) = 1/w for |ν − ν0| ≤ w/2 andφ(ν) = 0
for |ν − ν0| > w/2, whereν0 is the line center frequency andw is the line width. Bothf
andd depend only upon the angle and position, not on frequency, within the line. The line
width, w, is factored out of the equations by suitably redefining the fields.
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Making the transformation to the difference field, the counterparts to Eqs. (14) and (15)
are

∂d(x, t;µ)
∂t

+ cµ
∂d(x, t;µ)

∂x
= − c [K12−(K21+K12) n(x, t)] d(x, t;µ)

− ∂B(n(x, t))
∂t

− cµ
∂B(n(x, t))

∂x
, (16)

and

∂n(x, t)
∂t

= C12 − (C12 + C21) n(x, t)

+ c [K12 − (K21 + K12)n(x, t)]
∫ 1

−1

dµ d(x, t;µ) , (17)

respectively. From these equations we develop three Monte Carlo methods based upon
different treatments of the source terms−∂B/∂t and−cµ ∂B/∂x.

3. NUMERICAL DEVELOPMENT

Let us divide the slab intoN zones. The zones are labeled from left to right1 through
N with the position of the left edge of theith zone labeledxi. We specify an extra point,
xN+1, to mark the position of the right-hand boundary of the slab. We considern to
be piece-wise constant in space within a zone, but allow it to vary continuously in time.
SinceB(n) behaves likewise, let us writeBi(t) as the value ofB in the ith zone at time
t. Further, for the purposes of this discussion, let us defineB0 andBN+1 for the two
boundary regions, representing the boundary conditions to the left and right of the slab
respectively, in accordance with our treatment of boundary conditions in the difference
formulation introduced in the previous section. Then we may write

B(x, t) = B0 +
N+1∑
i=1

(Bi(t)−Bi−1(t))u(x− xi) , (18)

whereu(x) is the unit-step function we define asu(x) = 1 for x > 0, u(x) = 0 for x ≤ 0.
Generally, the total Monte Carlo weight to be emitted from a sourceS is given by the

integral

W =
∫

R

S dR , (19)

whereR is the finite volume element of the relevant phase space used in the numerical
model anddR is its infinitesimal. For this modelR is 2∆x∆t, and so we may write

W t = −
∫ µ=+1

µ=−1

dµ

∫
∆x

dx

∫
∆t

dt
∂B

∂t
, (20)

and

W x = −c

∫ µ=+1

µ=−1

dµ

∫
∆x

dx

∫
∆t

dt µ
∂B

∂x
, (21)

where the superscriptst and x indicate the weight emitted by the−∂B/∂t and the
−cµ ∂B/∂x source, respectively. The probability distribution function of the physical
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variables to be sampled is given by

g =
S

W
, (22)

for a sourceS emitting weightW . We use these relations to develop the foundation for
three Monte Carlo methods for solving the difference formulation for atomic line transport,
Eqs. (16) and (17).

3.1. Source Terms
The spontaneous emission term,nA21/2, in the standard formulation, Eq. (14), is re-

placed by two new source terms, namely−∂B/∂t and−cµ ∂B/∂x, in the difference
formulation, Eq. (16). The new source terms play different roles than the spontaneous
emission term of the standard formulation. The−cµ ∂B/∂x term is responsible for driv-
ing the transport of thed field through the slab, and the−∂B/∂t term acts to compensate
for changes in the reference fieldB(n) by changing thed field in order to holdf fixed.

3.1.1. Source term−∂B/∂t

We evaluate Eq. (20) for a given zonei giving the weight to be accorded to the−∂B/∂t

source term:

W t
i = −

∫ µ=+1

µ=−1

dµ

∫
∆xi

dx

∫ t0+∆t

t0

dt

(
∂B

∂t

)
i

= −2∆xi [Bi(t0 + ∆t)−Bi(t0)] , (23)

where we have used the piece-wise constant property ofB in the integral over∆xi.
Now we may write the distribution function for the source in zonei using Eq. (22)

gt
i =

(∂B/∂t)i

2∆xi [Bi(t0 + ∆t)−Bi(t0)]
. (24)

Further development of the distribution function depends upon assumptions about the nature
of the differencing employed and varies with our construction of the Monte Carlo methods
we use for the difference formulation. We will address the details of our construction later
in this work.

3.1.2. Source term−cµ ∂B/∂x

Now let us consider the space-derivative term. Due to the piece-wise constant treatment
of n, this source term is non-zero only at a discontinuity in the value ofn between two
adjoining zones or at a discontinuity between the surfaces of the slab and its surroundings.

The derivative∂B/∂x gives

∂B

∂x
=

N+1∑
i=1

(Bi(t)−Bi−1(t)) δ(x− xi) , (25)

whereδ is the Dirac delta function.
Since−cµ ∂B/∂x is an odd function ofµ in slab geometry, the sum of the weight emitted

from this source over all angles{θ : µ = cos θ} is zero. Nevertheless, it is not correct
to ignore the source;−cµ ∂B/∂x is responsible for driving the transport ofd particles
through the slab. Our solution is to emitd-particle pairs of equal and opposite weight in
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+µ and−µ directions, thereby assuring that zero net weight is emitted without statistical
noise.

To find the weight to be emitted, say in the+x direction in theith zone, we integrate the
−cµ ∂B/∂x source fromµ = 0 to µ = 1

W+x
i = −c

∫ µ=1

µ=0

µdµ

∫ t0+∆t

t0

dt

∫ xi+∆xi

xi

dx δ(x− xi)[Bi(t)−Bi−1(t)] =

− c

2

∫ t0+∆t

t0

dt [Bi(t)−Bi−1(t)] . (26)

Weight emitted in the−x direction is identical, except for a change in sign.
Now we may write the distribution function for the source in the+x direction in zonei

using Eq. (22)

g+x
i =

2µδ(x− xi) [Bi(t)−Bi−1(t)]∫ t0+∆t

t0
dt [Bi(t)−Bi−1(t)]

. (27)

The presence of theδ-function tells us that the particles are to be emitted at zone boundaries.
Emission angles are sampled according toµ =

√
ρ, whereρ is a random variate uniformly

distributed between0 and1.

3.2. Solution methods
We construct three different Monte Carlo solution methods employing the difference

formulation for the transport of an atomic line. In the construction we address the details of
the treatment of the source terms. The solution methods utilize different degrees of implicit
treatment of the source terms, with each succeeding method being more implicit than the
one before it.

We begin by integrating Eq. (17) over a time step, approximatingn(t) by n(t0 + ∆t) in
the collision (pumping) terms and byn(t0) in the absorption term, giving

n(x, t0 + ∆t) = n(x, t0) + [C12 − (C12 + C21) n(x, t0 + ∆t)]∆t

+ c [K12 − (K21 + K12) n(x, t0)]
∫ t0+∆t

t0

dt

∫ 1

−1

dµ d (x, t;µ) , (28)

wheret0 is the census time of the previous Monte Carlo integration cycle andt0 +∆t is the
census time of the current cycle. This intermediate step is the common point of departure
for the three Monte Carlo solution methods.

We would like to note that for the difference formulation the source terms of the transport
equation, Eq. (16), do not appear in the material response equation, Eq. (17), and are likewise
absent in Eq. (28). This is in contrast to Eqs. (14) and (15), where the spontaneous emission
term,A21n, appears in both the transport and the material response equation, causing stiff
coupling between them. The self-consistent differencing of the spontaneous emission term
in Eqs. (5) and (6), for the purpose of stability, leads to effective scattering in the IMC
method discussed in [3], and the linear system solve in the SIMC method discussed in [5].

3.2.1. The explicit solution method

In this method there is no implicit treatment of the sources and, unlike SIMC, it does not
require the inversion of a matrix at the end of each Monte Carlo integration cycle in order
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to calculateni(t0 + ∆t). In this scheme−cµ ∂B/∂x is explicitly differenced at timet0,
and the action of−∂B/∂t is delayed until the end of the integration loop, at which point
n(t0 + ∆t) is available.

Starting with the−∂B/∂t source for zonei, we approximate(
∂B

∂t

)
i

≈ Bi(t0 + ∆t)−Bi(t0)
∆t

. (29)

Substituting this result into Eq. (24) gives

gt
i =

1
2 ∆xi ∆t

, (30)

which directs us to distribute the weight given in Eq. (23) evenly within the zone.
Considering the−cµ ∂B/∂x source, we takeBi(t) → Bi(t0), the value ofBi at the

beginning of the time interval. Substituting this into Eq. (26) gives

W+x
i = −c∆t

2
[Bi(t0)−Bi−1(t0)] , (31)

for emission in the+x-direction. And Eq. (27) becomes

g+x
i =

2µδ(x− xi)
∆t

, (32)

where the weight of the source is to be distributed evenly throughout the time interval∆t,
but the emission is to take place on the zone boundaryxi.

At the beginning of each iteration of the Monte Carlo integration loop, difference particles
from the−cµ ∂B/∂x source are emitted at the zone boundaries usingB(t0), and distributed
uniformly in time across the time step interval∆t. The particles are then propagated to
census time,t0 + ∆t, according to Eq. (16) beforen(t0 + ∆t) is calculated.

To obtainni(t0 + ∆t), write Eq. (28) as

ni(t0 + ∆t) = γni(t0) + γC12∆t +
γc

∆xi
[K12 − (K21 + K12)ni(t0)]Di , (33)

wherei is the zone index,∆xi is the width of the zone,

γ =
1

[1 + (C12 + C21)∆t]
, (34)

and where

Di =
∫

∆t

dt

∫
∆xi

dx

∫ 1

−1

dµ d (x, t;µ) (35)

is the time integral of thed-field calculated from Monte Carlo particles traveling through
zonei during the time step.

Now that we have an estimate ofni(t0 + ∆t) from Eq. (33), difference particles sample
the−∂B/∂t source with the total weight given by Eq. (23) and are evenly distributed in
space within a zone. This emission is not evenly distributed across the time step, it has
a time coordinate oft0 + ∆t, the census time of the current integration interval. This
sequence is then repeated for the next time step.
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3.2.2. The semi-implicit solution method

We call this method “semi-implicit” because we implicitly difference the−∂B/∂t source
term, but explicitly difference the−cµ ∂B/∂x source term. The implicit differencing of
the−∂B/∂t source term leads to a matrix solve at the end of each iteration of the Monte
Carlo integration loop. Our purpose in examining this method is to provide insight into
the sources of numerical instability of the fully explicit method described above. Once one
must pay the cost of the non-linear matrix solve, one might as well extract the benefits of a
fully implicit solution method.

In this semi-implicit treatment of the source terms for the difference formulation, the
emission from−∂B/∂t is calculated at the start of the integration loop, not postponed until
the end as in the explicit scheme just discussed. The weight emitted is given by Eq. (23).
However,Bi(t0 + ∆t) is unknown at this point, and a portion of the weight,−2∆xi, is
“symbolic” in the same vein as in [5] and requires a non-linear matrix solve at the end
of each Monte Carlo integration cycle. The remaining portion,2∆xBi(t0), contains no
unknown factors and provides known (numeric) contributions to thed-field. The particles
are created with time coordinates uniformly distributed over the interval∆t as dictated by
Eq. (30), in contrast to the explicit case where their time coordinates are set to census time.

Next, the−cµ ∂B/∂x source is sampled in the same way as in the explicit treatment
above, andd-particles with weight given by Eq. (31) are created. These particles, fully
numeric contributions to thed-field, are distributed in space, time and direction according
to Eq. (32).

This treatment of the source terms leads to the following representation of Eq. (28):

ni(t0 + ∆t) = γni(t0) + γC12∆t +
γc

∆xi
[K12 − (K21 + K12)ni(t0)]

×

Di +
N∑

j=1

Dij Bj(t0 + ∆t)

 . (36)

HereDij is the symbolic contribution to theith zone from particles born in thejth zone, and
Di is the contribution to zoneicoming from particles with numeric weights in much the same
way as in Eq. (33), including the numeric contributions from−∂B/∂t and−cµ ∂B/∂x

sources. The sole contributor to symbolic energy depositions is the forward-differenced
portion of−∂B/∂t.

SinceB is non-linear inn, then Eq. (36) represents a non-linear system that must be solved
for nj(t0+∆t) at the end of each cycle through the integration loop, whereas the equivalent
expression in [5] represented a system linear inn. We iterate the Newton-Raphson algorithm
to solve the non-linear system fornj(t0 +∆t), and then useB(nj(t0 +∆t)) to convert the
Monte Carlo particles with symbolic weights to numeric weights. In this way thed-field, at
census, is fully numeric and free of unknown factors before the next iteration of the Monte
Carlo integration loop.

3.2.3. The implicit solution method

We call this method “implicit” because we treat the−cµ ∂B/∂x implicitly in time.
By takingBi(t) → Bi(t0 + ∆t), instead ofBi(t) → Bi(t0) as in the last two methods
introduced above, Eq. (26) becomes

W+x
i = −c∆t

2
[Bi(t0 + ∆t)−Bi−1(t0 + ∆t)] . (37)
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Eq. (32) remains unchanged.
The sequence of calculations in the integration loop is similar to that used in the semi-

implicit method above. First, particles sampling the−∂B/∂t source are emitted with
a portion of their weight numeric,−2∆xi Bi(t0), and the remainder symbolic,−2∆xi,
according to Eq. (23) and exactly like the semi-implicit method. Next,−cµ ∂B/∂x is
sampled according to Eq. (32), but in this case the weight is purely symbolic.

We write Eq. (28) as

ni(t0 + ∆t) = γni(t0) + γC12∆t +
γc

∆xi
[K12 − (K21 + K12)ni(t0)]

×

Di +
N∑

j=1

Dt
ij Bj(t0 + ∆t) +

N+1∑
k=1

Dx
ik [Bk(t0 + ∆t)−Bk−1(t0 + ∆t)]

 (38)

where we introduce the new symbolic contribution,Dx
ik, of the−cµ ∂B/∂x source emitted

from zonek and propagated to zonei, where[Bk(t0 + ∆t)−Bk−1(t0 + ∆t)] is the factor
necessary to convert that symbolic weight into numeric weight. One may consider the
last summation as one over zone interfaces while remembering that the indexk in Bk and
Bk−1 refers to zone indices. The termDt

ij represents the symbolic contribution of the
−∂B/∂t source, theDi term includes the numeric contributions from−∂B/∂t sources,
andBj(t0 + ∆t) plays the same role in this equation as it does in Eq. (36).B0 andBN+1

are prescribed boundary conditions.

4. NUMERICAL RESULTS IN THE GRAY APPROXIMATION

We select the SIMC solution method in the standard formulation as a point of comparison
for the difference formulation [7]. We discuss the numerical accuracy and efficiency, and
report on the numerical stability of each of the three Monte Carlo solution methods we
developed in the previous section, with emphasis on exploring the stability characteristics
of the fully explicit version, itself free of a matrix solve at the end of each integration
cycle, relative to the SIMC treatment of the standard formulation for a range of optical
thicknesses. We do not address the issue of teleportation error [9] in this work. For the sake
of brevity, we refer to each of the Monte Carlo solution methods we developed above for
the difference formulation for atomic line transport as one of a trio of “difference methods”
and to SIMC for the standard formulation as the “standard method.” The problems were
run until equilibrium was reached.

4.1. Relative accuracy and efficiency
Table I lists the parameters describing the initial and boundary conditions and the material

parameters we use in comparing the SIMC method (standard method) for the standard
formulation to each of the three Monte Carlo methods (difference methods) developed in
the previous section for the difference formulation. In all calculations the slab is initialized
with n = 0.25 for all zones and the photon fieldsf(t = 0) = 0. This initial state for the
photon field,f , corresponds to a non-zero initial difference field,d, which must be sampled
to properly initialize the system. While this provides a net zero photon field in each zone,
the statistical nature of sampling leads to small, local fluctuations. As we will show, this
in turn can lead to differences among the methods in their transient behavior, even in the
limit of short time steps.
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The optical depth for this model depends on the value ofn(x, t). We first tune the input
parameters using the standard method to obtain the desired nominal optical depth, then use
the same input values for the difference methods.

TABLE I
Input parameters used for all Monte Carlo solution methods describing the initial

conditions, boundary conditions, and material properties of the unit slab.

Value
Parameter Nominal Optical

Depth= 1
Nominal Optical

Depth= 10
Nominal Optical

Depth= 100
Nominal Optical
Depth= 1000

n(0 ≤ x ≤ 1, t = 0) .25 .25 .25 .25
f(x, µ, t = 0) 0 0 0 0
n(x < 0, t) 0 0 0 0
n(x > 1, t) 0 0 0 0

K12 1.125 18 207.5 2155
K21 1.125 15.3422 207.5 2155
C12 0.245423 0.245423 0.245423 0.245423
C21 0.667128 0.667128 0.667128 0.667128

In order to more faithfully reproduce the boundary layer near the edges of the slab
for thicker problems, we find it necessary to modify the zoning, depending upon optical
thickness, and this can influence execution time. Since the gradient ofn in space varies
slowly and more uniformly over the length of the slab in the thin problems – optical
thicknesses1 and10 – we model the slab using21 zones of uniform size in thin systems.
However, for thick problems – optical thicknesses of100 and1000 – gradients inn are
concentrated in the boundary layers. For these we use small zones in the boundary layers
and increase their size in a geometric progression towards the center of the slab. Thus, we
can compare accuracy and efficiency among methods for a given optical thickness only.

4.1.1. Relative accuracy

Table II demonstrates the accuracy of the three Monte Carlo solution methods relative to
the SIMC method for a simple, two-level, system in slab geometry. The data consist of the
means and standard deviations of120 statistically independent calculations of the optical
thickness of the slab for each method, in equilibrium, for the fixed input parameters shown
in Table I. The results show that the means of the calculated optical thicknesses are within
one standard deviation of each other. Therefore, the results are statistically consistent with
the assertion that all three Monte Carlo solution methods in the difference formulation
converge to the same result as SIMC in the standard formulation in equilibrium. It is
interesting to note that the standard deviations of the difference methods are approximately
independent of optical depth, whereas those of SIMC increase several orders of magnitude
as optical depth increases.

4.1.2. Relative efficiency

The variance in a Monte Carlo calculation scales inversely with the number of particles
used, in the limit of large particle count. We use this fact as a means to evaluate the relative
efficiency of the methods for a given discretization of the problem. We match the run-times
among the methods by adjusting the number of Monte Carlo particles used in each, taking
care to ensure that the Monte Carlo effort dominates the calculation and that the variance
scales appropriately with the number of Monte Carlo particles. Then the variances of the
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TABLE II
The means and standard deviations of the optical thickness of a unit slab calculated

using each of the three difference methods and the standard method, at
equilibrium. All calculations are matched in execution time.

Nominal Optical
Thickness

Difference Method:
Explicit

Difference Method:
Semi-Implicit

Difference Method:
Implicit

Standard Method

1 1.0087± 2× 10−4 1.0088± 1× 10−4 1.0087± 1× 10−4 1.00873±8×10−5

10 10.067± 1× 10−3 10.067± 1× 10−3 10.0671±9×10−4 10.067± 4× 10−3

100 98.655± 1× 10−3 98.654± 1× 10−3 98.653± 1× 10−3 98.65± 8× 10−2

1000 998.726±1×10−3 998.726±1×10−3 998.7263±9×10−4 998.7± 9× 10−1

calculations are inversely proportional to the relative efficiencies of the methods. This
is how we estimate the run-time advantage of the difference methods over the standard
method.

Table III consists of the variances of the optical depths presented in Table II, and Table IV
shows the calculated speed-up factors, based upon the measurements in Table III. All three
difference methods show a clear run-time advantage over the standard formulation for thick
systems. The advantage is striking at an optical depth of1000 mean free paths. However,
as Table IV shows, for thin problems the advantage diminishes and is lost completely
somewhere between optical depths of10 and1, corresponding to a per-zone optical depth
of 0.5 and 0.05, respectively. For thick systems, the desired statistical accuracy is achieved
with a much lower particle count.

TABLE III
The variances of the optical thickness of a unit slab calculated using the three

difference methods and the standard method, at equilibrium.

Nominal Optical
Thickness

Difference Method:
Explicit

Difference Method:
Semi-Implicit

Difference Method:
Implicit

Standard Method

1 3.0× 10−8 1.5× 10−8 1.4× 10−8 6.0× 10−9

10 1.1× 10−6 1.0× 10−6 8.2× 10−7 1.8× 10−5

100 1.1× 10−6 1.2× 10−6 9.3× 10−7 6.9× 10−3

1000 9.6× 10−7 1.0× 10−6 6.0× 10−7 8.7× 10−1

TABLE IV
Speed-up factors of the three difference methods over the standard method for

various nominal optical thicknesses.

Nominal Optical
Thickness

Difference Method:
Explicit

Difference Method:
Semi-Implicit

Difference Method:
Implicit

1 2.0× 10−1 4.0× 10−1 4.3× 10−1

10 1.6× 101 1.8× 101 2.2× 101

100 6.3× 103 5.8× 103 7.4× 103

1000 9.1× 105 8.7× 105 1.5× 106
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4.2. Transient behavior of the difference and standard formulations
While we do not expect two different solution methods, such as the standard method

and any one of the three difference methods, to behave identically during the first few time
steps of the integration, we do expect their behaviors to converge for sufficiently small time
step sizes.

This is indeed the case. Figures 1 through 4 show the transient behavior ofn(t), the
fraction of atoms in the excited state, in the central zone of a slab with an optical thickness
of 10 mean free paths at equilibrium. Figures 1 through 3 show the transient behavior of
each of the three difference methods, with Figure 4 showing the transient behavior of the
standard method. Each figure shows graphs ofn(t) calculated with different time step sizes
in units of (slab length)/c, wherec is the speed of light in the material (set to1 in this
work).

Initially the slabs have uniform excitation energies corresponding ton(x, t = 0) = 0.25,
but there are no photon fields. At the start, the radiation field and the material energy are
out of equilibrium, withn falling initially in order to bring about radiative equilibrium.
The motion ofn is then driven by the net collisional excitation and absorption, recovering
on a longer time scale. Each of the difference methods and the standard method show
this behavior and agree qualitatively. Note the overshoot in the standard formulation and
explicit implementation of the difference formulation for long time steps. Their quantitative
agreement improves with decreasing time step sizes, and Figure 5 shows good overlap
among the four methods for a time step size of0.00625.

Aside from the noise apparent in the standard method as the magnitude of the photon
field grows, there is a small but discernible difference in the minimum ofn(t) among
the four methods. We believe this is due to sampling noise. Recall that initializing the
photon field to zero in the difference formulation requires samplingd(t = 0) so that
f = d + B(t = 0) = 0. Statistical fluctuations in the Monte Carlo sampling of the
physical coordinates of the particles composing this initiald-field leads to small, localized
fluctuations that can affectn shortly aftert = 0.

Table V shows the average and one standard deviation of the minimumn reaches for200
statistically independent calculations using each of the three difference methods and the
standard method, all matched in execution time. The time step size used in each calculation
is 0.00625, the same as in Figure 5. Also shown are the average and standard deviation
of the times at whichn reached its nadir in the calculations. Table V shows that the three
difference methods and the standard method produce minima of the same magnitude and
at the same time, within the estimated uncertainties. Thus we show that not only do the
difference methods agree with the standard method in equilibrium (see Table II) they also
agree in the transient behavior ofn for sufficiently small time step sizes.

4.3. Numerical stability of the difference formulation
We explore the stability characteristics of the three different treatments of the source

terms in the difference formulation for line transport. Of particular interest is the numerical
stability of the explicit treatment, since it is free of a matrix solve in the Monte Carlo
integration cycle and will thus remain economical as the number of zones in the problem
increases. We find the implicit treatment, Eq. (38), for the difference formulation to be
numerically stable for optical thicknesses ranging from1 to 1000, even for time step
sizes on the order of10 light travel times across the slab, and we expect the treatment to
remain stable for thicker systems. This provides numerical evidence that this treatment
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FIG. 1. Transient behavior ofn(t) – the fraction of atoms in the excited state – in the central zone for the
explicit difference method.
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FIG. 2. Transient behavior ofn(t) – the fraction of atoms in the excited state – in the central zone for the
semi-implicit difference method.
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FIG. 3. Transient behavior ofn(t) – the fraction of atoms in the excited state – in the central zone for the
implicit difference method.
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FIG. 4. Transient behavior ofn(t) – the fraction of atoms in the excited state – in the central zone for the
standard method.
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FIG. 5. Transient behavior ofn – the fraction of atoms in the excited state – of the three difference methods
and the standard method.

TABLE V
The mean and standard deviation of the minimumn and the time of its nadir.

Quantities were calculated using the three versions of the difference
method and the standard method.

Monte Carlo Solution Methods Minimum n Time of nadir ofn

Difference Method: Explicit 0.204± 0.001 0.197± 0.008
Difference Method: Semi-Implicit 0.204± 0.001 0.196± 0.008

Difference Method: Implicit Scheme 0.204± 0.001 0.196± 0.008
Standard Method 0.2041± 0.0001 0.193± 0.004

of the source terms is unconditionally stable. We find that both the explicit and the semi-
implicit treatments, Eqs. (33) and (36), respectively, are only conditionally stable. For
these treatments of the source terms, stability depends upon the optical depth of the slab,
the size of the zones, and the size of the time step. Figures 6 and 7 show the approximate
neighborhood of the onset of instability for both treatments. The methods are numerically
unstable in the regions above their graphs. Beyond a certain optical thickness, the systems
become stable for practically any time step size, so the graphs terminate. The calculations
were run until the systems were well equilibrated. Whereas the explicit differencing of the
standard formulation is known to be stable for thin and unstable for thick systems [2], we
find the contrary for the semi-implicit and fully explicit difference methods. Thus, in the
explicit treatment of the difference formulation it appears that we trade numerical stability
in thin systems for numerical stability in thick systems.

Figures 6 and 7 show that the regions of stability for both the explicit and the semi-
implicit methods are similar in shape. It is apparent in both figures that the explicit
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treatment requires shorter time steps in order to obtain stability. For thin systems the
stability of both treatments is insensitive to the zone size, as shown in Figure 7. For thick
systems the constraint on the time step size in order to obtain stability is relaxed as the
zone size is increased. Both figures demonstrate that the optical thickness of the zones is
an important factor in the stability of the calculations.
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FIG. 6. Graphs of the time step size versus optical depth of the slab near the edge of numerical stability
for the explicit and semi-implicit difference methods. Two zone thicknesses are shown. The vertical axis is in
units of(slab length)/c. Instability for a given treatment of the source terms occurs above the line. Beyond the
termination of the lines, the calculations are stable for any time step.

It is interesting to note the weakness of the dependence of both the semi-implicit and
explicit treatments of the source terms on the zone size,∆x, for thin systems. Terms in
the finite difference equations, Eqs. (33) and (36), that depend upon zone size have little
apparent influence upon the stability of those solution methods. Additionally, since both
treatments of the source terms have similar regions of stability, a formal stability analysis
of the simpler explicit formulation may give insight into the stability criterion of the more
complicated, semi-implicit method.

For the slab geometry, collisional-pumped, line-trapping problems studied here, the
explicit treatment of the source terms, unencumbered by a non-linear system solve at each
time step, appears no more economical than the semi-implicit method, which is more stable.
One should consider, however, that the cost of the non-linear system solve grows rapidly
as one scales the number of zones in the problem. Further, while the implicit scheme
demonstrates superior stability characteristics, it too relies upon a non-linear system solve
at each time step. Since the primary difference between the conditionally stable methods
and the apparently unconditionally stable implicit method is the explicit treatment of the
−cµ ∂B/∂x-term, we believe that it is responsible for driving the numerical instability in
the explicit and semi-implicit treatments of the source terms.
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FIG. 7. Graphs of the time step size versus zone size near the edge of stability for the explicit and semi-
implicit difference methods. The slabs are divided into zones of uniform size and two optical depths for each
scheme are shown. The vertical axis is in units of(slab length)/c, and the horizontal axis is in fractions of the
total length of the unit slab.

5. CONCLUDING REMARKS

In this paper we examined the accuracy and performance of the difference formulation
[7] relative to the Symbolic Implicit Monte Carlo (SIMC) [5] solution method applied to the
standard formulation of photon transport in a strongly absorbing/emitting two level system
using the gray approximation. We developed three different numerical treatments of the
difference formulation and presented evidence of their superior computational efficiency
for thick systems. We found that to an equivalent noise figure, the difference methods
were106 times faster than the standard method for slabs1000 mean free paths thick, or
equivalently, provide a103 reduction in Monte Carlo noise for a given execution time.

We demonstrated that the three implementations of the difference formulation we devel-
oped were in excellent agreement with the SIMC implementation of standard formulation.
Additionally, we showed through a detailed comparison that while their transient behavior
differs for large time steps there is good numerical evidence that all the treatments of the
source converge for sufficiently small time steps.

We found that the fully implicit version of the difference formulation is stable, and we
believe it to be unconditionally so. The fully explicit version, although free of any matrix
solve, is only conditionally stable. Moreover, it possess a stability region similar to the
semi-implicit difference method which may provide insight into a formal stability analysis.
For both conditionally stable versions of the difference formulation, stability appears to
depend strongly upon the optical thickness of the zones dividing the material. Finally, we
believe that it is the explicit treatment of the−cµ ∂B/∂x term that drives the instability in
the explicit difference method.
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As a final note, the explicit treatment of the source terms in the standard formulation is
stable in the limit of optically thin systems, while the explicit source term treatment of the
difference formulation is stable in the limit of optically thick systems. This leaves open the
possibility that the non-linear matrix solve might be avoided when applying the difference
formulation to practical problems involving thick media.
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